I did not know that. But I do know that I'm getting attacked by fire ants an average of twice a day, simply by walking through the grass. and the bites are really painful!!blah. they're making their mounds underground now.
did you know the spotted skunks do a handstand before spraying?
Greyhoundgirl here is some info i found at http://www.earthlife.net/chelicerata/silk.html
Paul Hillyard says in The Book of the Spider 1994. "For an equal diametre, spider silk is stronger than steel and about as strong as nylon. It is, however much more resilient and can stretch several times before breaking - it is twice as elastic as nylon and more difficult to break than rubber. The energy required to break spider silk (its 'toughness') is about ten times that of other natural materials such as cellulose, collagen and chitin. Dragline silk (about .00032 inch (.008 mm) in Nephila) is especially strong - approximately twice that of silk from silkworms
At How Stuff Works we are told. "Spider silk is extremely strong -- it is about five times stronger than steel and twice as strong as Kevlar of the same weight. Spider silk also has the ability to stretch about 30-percent longer than its original length without breaking, which makes it very resilient."
If all that is a little confusing, is it as strong as steel, stronger than steel or less strong, is it stronger than Kevlar or not, perhaps we can find some facts somewhere. The truth is it depends on how you measure it and what condition the silk is in. Silk absorbs moisture (a property given it by the large amount of the amino acid Alanine it contains). The more water silk contains the less brittle and the more elastic it is. The range is from about 30% to 300% elasticity depending on the amount of water it contains. Thus we can see that changing the humidity of the environment the silk is spun in, and the length of time it exists in that environment before it is tested will effect the results of the tests.
With all these things considered we learn that the tensile strength of spider silk under normal laboratory conditions is slightly less than steel if you compare it in terms of the threads diametre, but it is far greater than that of steel if you compare it in terms of the weight of the thread. Obviously spider silk is lighter per unit area than steel. When we make the comparison with Kevlar we find that it is three times harder to break than spider silk, however spider silk is five times as elastic.